Introduction to Ringworld Technology

Eric A. Comstock Self-funded Graduate Student eric.comstock@gatech.edu Álvaro Romero Calvo

Assistant Professor

alvaro.romerocalvo@gatech.edu

Georgia Space Systems Tech Design Laboratory

Motivation

- "Domiciled on a planet, living space will not be a major problem for [Type I] cultures. But emergent Type II societies will find no such ready-made living quarters in orbit." Robert Freitas
- Earth is a single planet
 - Limited area for urban development
 - Limited food production capacity
 - Limited waste heat disposal

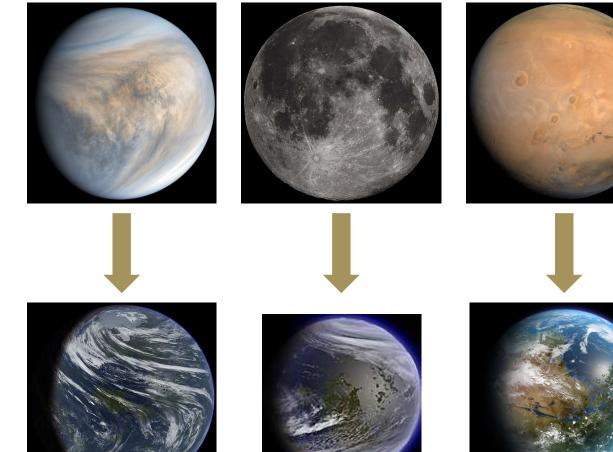
Instead of relying on natural land, we must build our own.

We have faced this problem before

Natural spaces

Artificial Reproduction

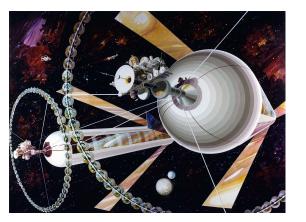
Improvement

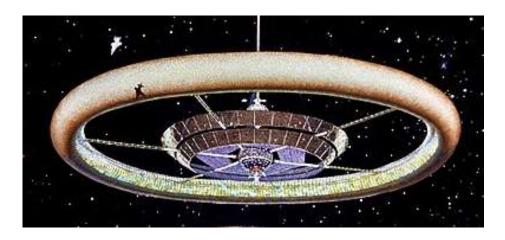


Potential solutions

Reproducing and Improving

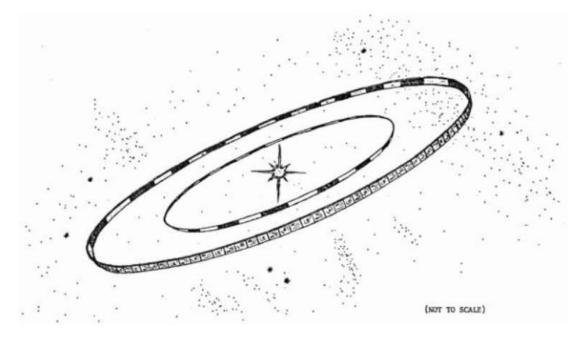
Terraforming


- Finding more caves
- Rocky planets: 2x Earth
- Ice giants: 30x Earth
- Gas giants: 500x Earth
- Requires huge effort
- Potential complications



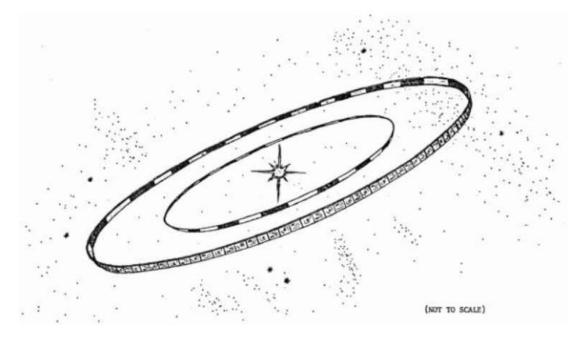
Space Habitats

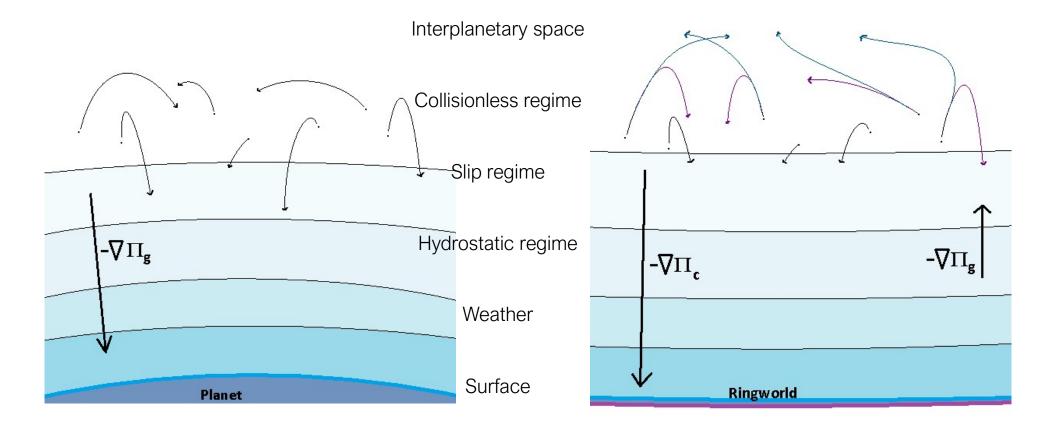
- Reproduce the cave
- Centrifugal gravity
- Options
 - O'Neill cylinder
 - Stanford torus
 - Cole planetoid
- City-sized, not planet-sized
 - Large numbers required
 - Problems with orbit coordination



Ringworld

- Improving upon the cave
- Centrifugal gravity
- 10^3 to 10^7 times Earth's area
 - Economies of scale
- Thin profile allows stacking
- Problems
 - Dynamical instability
 - Material strength
 - Atmosphere loss

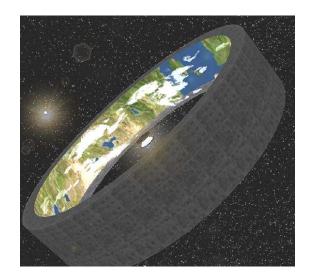

 $\begin{array}{l} \text{Ring mass} = 2.5 \times 10^{27} \text{ kg} \\ \text{Radius} = 1.5 \times 10^{11} \text{ meters (1 AU)} \\ \text{Wall height} = 2 \times 10^6 \text{ meters} \\ \text{Floor thickness} = 1000 \text{ meters} \end{array}$


Ringworld

- Improving upon the cave
- Centrifugal gravity
- 10^3 to 10^7 times Earth's area
 - Economies of scale
- Thin profile allows stacking
- Problems
 - Dynamical instability Active control
 - Material strength Active support
 - Atmosphere loss???

Ring mass $= 2.5 \times 10^{27}$ kg Radius $= 1.5 \times 10^{11}$ meters (1 AU) Wall height $= 2 \times 10^{6}$ meters Floor thickness = 1000 meters

Atmosphere retention


Next steps

- Collisionless particle simulation
- Development of a solver
 - Inertial or rotating coordinates?
- Stochastic initial conditions
- Future work
 - 3rd-body effects
 - Solar wind
 - Sensitivity to pressure and gravity
 - Effects of excessively small ring sizes (<1 R_E)
 - Sensitivity to nondimensional stellar mass $\frac{aR^2}{C}$
 - Sun ~ 0.005
 - Red dwarfs ~ 0.2 5
 - Blue giants ~ 0.00001

Images by Elowiny, Jones, and Steve Bowers

eric.comstock@gatech.edu

https://www.linkedin.com/in/eric-comstock-999483232

https://ericanthonycomstock.com

More information available at www.information.edu wwww.information.edu <a href="https://www.informat